快捷搜索:

一小时说服发那科合作,这家日本顶尖AI创业公司迈向“日本三强”产业链顶端

不到 200 名成员的公司已经将深度学习应用到了汽车,制造和生物医疗等行业(日本实力最强的三个领域),而且还有个人机器人的计划。每个领域都充满挑战,一般创业公司通常只会专注某个领域。

2012 年,深度学习取得重要突破后,冈原大辅和西川彻注意到了深度学习的两个独特之处,可以将它应用到更加广泛领域中。

一方面,可以很容易处理非常高维的数据。高维数据的一个重要例子就是时间序列数据,这在工业设备的传感器数据中很常见;

另一方面,深度学习是无模型,不需要假设概率分布的先验知识,任何一个概率分布可以用足够复杂的神经网络来逼近。

2014 年,他们成立了 PFN。如果说公司设立之初,创始人曾犹豫业务支柱是否放在深度学习上,那么,2015 年春天对富士山脚下巨头公司的拜访,让他们确信制造将是应用深度学习专业知识的核心领域。

当谷歌、亚马逊等互联网巨头竞相训练系统理解语言时,能造出世界上最先进设备的日本制造业尚未得到开垦。

一小时说服发那科合作,这家日本顶尖AI创业公司迈向“日本三强”产业链顶端

经历最初的怀疑之后,公司创始人冈原大辅 (左) 和西川彻 (Toru Nishikawa) 确信,他们应该把整个业务建立在深度学习的基础上。

如今,PFN 将图像识别技术用于制造过程中的视觉检测、仓库货架上的取物、机器故障预测,还扩展到了自动驾驶、生物医疗、智慧城市,公共安全等领域。公司估值超过 10 亿美元,成为日本最大、最有前途的人工智能公司,合作伙伴包括发那科、丰田、三井、松下、瑞惠金融、京都大学等。打开 innovation Japan 网页,第八个创新案例就是他们。

巨头们也开始攻城略地。

谷歌的 14 个机器人手臂可以分享知识并加快行动速度,他们也希望进入日本市场。亚马逊、微软、英伟达也虎视眈眈。

借用深度学习技术让机器人操作更加简单,也正在成为一个创业热点。一份对机器人报告网站全球数据库中 752 家机器人创业公司的分析显示,超过一半的创业公司都是以软件起家。

不过,他们担心的不是竞争对手,而是人才的引进与留存。

他们相信,与世界顶级机器人公司和其他制造商的密切关系,可以帮助他们深入了解客户的实际需求和所面临的挑战。

「与再造索尼相比,建立第二家索尼的速度更快。」两年前,接受《金融时报》采访的公司首席商务官(chief business officer)长谷川在谈及为何离开索尼加入这家创业公司时,曾这样说。

最近,PFN 首席研究官、研发 VP Shohei Hido 接受了机器之心的独家专访。以下是这次专访的主要内容。我们做了不更改原意的编辑。

一小时说服发那科合作,这家日本顶尖AI创业公司迈向“日本三强”产业链顶端

Preffered Network 首席研究官、研发 VP Shohei Hido

与发那科合作

发那科在世界制造业的地位,一句话就可以表明,「如果富士山喷发,整个世界都会停止运转。」公司有三大块业务:FA(工厂自动化);Robot 以及 Robo-Machine(小型数控机床)。2015 年 8 月,发那科获得 PFN6% 的股权,计划将运行深度学习的机器人纳入不久的未来。2017 年 12 月,发那科再获得 PFN 额外股权。

目前,PNF 已经将 DL 应用到发那科三大块业务中,并取得了优于传统方法的效果,已商用。比如在 FA 中,将机器学习用于伺服器调整;在 Robot 中,将 DL 模型用于提升机器人抓取任务的学习效率与准确性;在 Robo-machine 中,利用机器学习技术预测和补偿由温度波动引起的热位移,与现有功能相比,加工精度提高了约 40%。

在谈及与发那科合作面临的主要挑战时,PFN 认为专业背景差异导致相互理解很难。计算机科学背景的码农没办法理解机械或控制理论术语。相应地,机器人工程师也没办法理解机器学习术语。为此,两家公司会定期面对面和视频会议,FANUC 也一视同仁地将 PFN 纳入公司的强制性培训课程。

机器之心:深度学习应用场景有很多,比如金融、零售,为什么最终选择制造业?

日本有大型银行、零售商和电子设备制造商,但大多比较保守,我们没有找到足够大的 AI 应用市场,也没有很好的成功机会。和发那科 CEO 稻叶善治交谈后,我们发现在机器人应用方面有很大潜力,他们也在寻找人工智能方面的合作伙伴。他们认为,将自己产品与市场上其他机器人产品(比如 ABB)区别开来的关键差异化因素,接下来会是基于 AI 技术的软件。

机器之心:彭博社报道你们谈了一个小时就成功说服发那科投资 900 万美金,还获得了数千台机器人的巨大数据流,怎么做到的?

您可能还会对下面的文章感兴趣: