快捷搜索:

“完美药丸”选秀记

  每年,全世界数以百亿计的口服液和瓶装剂药品飞速地离开工厂,奔入寻常百姓家。

  自1867年德国西门子兄弟把蓄热室连续熔化池窑应用于玻璃工业后,小口瓶的成型技术广泛造福于人类。无论是医院使用的针剂,或者药房售卖的各种保健品和药液,都离不开150年前的那项历史性创造。

  然而,小玻璃瓶的安全还不能让人完全放心。玻璃瓶内的液体中偶有杂质、瓶身肉眼难见细小的裂纹,极可能会让药品失效或者导致服药的小宝贝面临意外的伤害。

  无数保健品和药品企业费尽心力,希望能将“害群之马”剔除。

  进入21世纪以来,担任这些“完美药丸”选秀重任的传统识别技术慢慢退出,依托人工智能的机器视觉登台起舞。

  他山之石 可以验玉

  2018年年初,英国的媒体纷纷聚焦于一项发明:专注于药品行业包装系统的专业公司Pharma Packaging Systems Ltd (PPS),借助机器视觉技术(MVT)公司开发出计数和检验系统。

  PPS公司希望能通过人工智能的算法打造一双“火眼金睛”,在快速运转的生产线上,检查出破损或不符合所需形状的产品。更重要的是,系统还可以检测不属于所需批次的产品,以防止交叉污染。

  在制药行业,如果未能在受到影响的批次流出制造商之前检验出交叉污染,不仅会遭受巨额罚款,还可能导致整个工厂在一段时间内进行关闭整顿。

  不负众望的MVT公司,很快让客户享受到机器视觉带来的好处。

  它开出的药方是:一般情况下,散装产品(药片或胶囊)会从料斗中被送入一连串的槽型振动托盘,以便分离不同产品并引导它们通过不锈钢托盘中的通道。高速红外光学传感器会计算自由下落的产品数量。系统以高精度、高速度完成产品计数,并将产品装入瓶子中,由丝杠驱动系统在传送机上进行编排。

  这里的创新之处在于将相机放置在最终的托盘上方,途经此处的药片紧接着将会被进行计数和装瓶步骤。每台相机均可拍摄6条药片通道的图像。在从上到下通过相机视场(FOV)的过程中,每个药片通常会被检测10次或以上。

  “堪称一项真正的成就!”国外媒体评价。

  这些报道,让远在湖南长沙市的纳威尔公司CEO曾小维会心一笑——1年多前,他们同样利用人工智能在机器视觉技术的顶端敲开了这扇门。万里之外同行的成功,更让他们信心满满。

  “皮匠们”的技术革命

  曾小维团队3位核心技术人员全部来自长沙理工大学物理与电子科学学院。曾小维来自2009级电子信息科学与技术专业,刘浪来自2010级光电信息科学与技术专业,陈建成来自2011级光电信息科学与技术专业。

  2012年,作为人工智能的核心概念,深度学习算法又开始在学术圈火爆起来。在国外的ImageNet大赛上,有研究团队使用深度学习方法将图片中的物体识别率一下子提升了好几个百分点,这在业界成了革命性的变化。

  正在校园内苦苦研究的曾小维,由此确定了以计算机视觉算法以及人工智能算法为将来的研究以及就业方向。更为凑巧的是,他也选择了药片检测作为进攻的目标。

  药片实时在线检测的关键在于,如何让计算机知道,一粒药片是完整的药片,还是有缺陷的“垃圾”?

  这在常人眼看来,似乎是很简单的,哪怕是3岁的小孩子也能分辨得出。但是对于计算机,就无比艰难。

  传统的方法是基于尺寸和面积来判断。但即便是这种方法,实现起来也并不容易。因为,药片在实际生产过程中,是从一个镜面抛光的不锈钢轨道上面流过去,每个药片都会在导轨的两侧有一个镜像,而利用面积和尺寸为基础的算法,会认为每一粒药都不合格。

  其次,药片在导轨上运行并非像小学生排着队伍出校门一样有序,两粒药片甚至多粒药片连接在一起向前跑的情况也很常见。系统会自动将这些药片打“×”。

  难题一重一重,让3个“臭皮匠”绞尽脑汁。经过多方面的评估之后,他们意识到,这个问题最好的解决方式,应该是利用外部的光源系统——利用某种光照技术将药片的镜像减到最低。

  为了制作出这样一个光源系统,他们首先将光路以及阴影面积的大小计算出来,然后找到东莞一家拥有十几年光源整体解决方案的企业,最终制作出来了一个可以使药片轨道上几乎看不到镜像的光源系统。

  于是,一项发明专利随之手到擒来。

您可能还会对下面的文章感兴趣: