快捷搜索:

深度学习以及关于TensorFlow的简介

2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求。这是TensorFlow的一个重要里程碑,标志着它可以正式在生产环境放心使用。在国内,从InfoQ的判断来看,TensorFlow仍处于创新传播曲线的创新者使用阶段,大部分人对于TensorFlow还缺乏了解,社区也缺少帮助落地和使用的中文资料。InfoQ期望通过深入浅出TensorFlow系列文章能够推动Tensorflow在国内的发展。欢迎加入QQ群(群号:183248479)深入讨论和交流。

本文是整个系列的第一篇文章,将会介绍深度学习的发展历史以及深度学习目前成熟的应用,同时也会介绍目前主流的深度学习工具,以及TensorFlow相比于其他工具的优势。

从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作。利用巨大的存储空间和超高的运算速度,计算机已经可以非常轻易地完成一些对于人类非常困难,但对计算机相对简单的问题。比如统计一本书中不同单词出现的次数,存储一个图书馆中所有的藏书或是计算非常复杂的数学公式都可以轻松通过计算机解决。然而,一些人类通过直觉可以很快解决的问题,目前却很难通过计算机解决。人工智能领域需要解决的问题就是让计算机能像人类一样,甚至超越人类完成类似图像识别、语音识别等问题。

计算机要像人类一样完成更多智能的工作需要够掌握人类的经验。比如我们需要判断一封邮件是否为垃圾邮件,会综合考虑邮件发出的地址、邮件的标题、邮件的内容以及邮件收件人的长度,等等。这是我们受到无数垃圾邮件骚扰之后总结出来的经验。这个经验很难以固定的方式表达出来,而且不同人对垃圾邮件的判断也会不一样。如何让计算机可以跟人类一样从历史的经验中获取新的知识呢?这就是机器学习需要解决的问题。

什么是深度学习?

对许多机器学习问题来说,特征提取不是一件简单的事情。在一些复杂问题上,要通过人工的方式设计有效的特征集合需要很多的时间和精力,有时甚至需要整个领域数十年的研究投入。例如,假设想从很多照片中识别汽车。现在已知的是汽车有轮子,所以希望在图片中抽取“图片中是否出现了轮子”这个特征。但实际上,要从图片的像素中描述一个轮子的模式是非常难的。虽然车轮的形状很简单,但在实际图片中,车轮上可能会有来自车身的阴影、金属车轴的反光,周围物品也可能会部分遮挡车轮。实际图片中各种不确定的因素让我们很难直接抽取这样的特征。

深度学习以及关于TensorFlow的简介

图1  传统机器学习和深度学习流程对比

深度学习以及关于TensorFlow的简介

图2  深度学习在图像分类问题上的算法流程样例

人工智能、机器学习和深度学习的关系

总的来说,人工智能、机器学习和深度学习是非常相关的几个领域。图3总结了它们之间的关系。人工智能是一类非常广泛的问题,机器学习是解决这类问题的一个重要手段,深度学习则是机器学习的一个分支。在很多人工智能问题上,深度学习的方法突破了传统机器学习方法的瓶颈,推动了人工智能领域的发展。

深度学习以及关于TensorFlow的简介

图3  人工智能、机器学习以及深度学习之间的关系图

图4展示了“deep learning”(深度学习)这个词在最近十年谷歌搜索的热度趋势。从图中可以看出,从2012年之后,深度学习的热度呈指数上升,到2016年时,深度学习已经成为了谷歌上最热门的搜索词。深度学习这个词并不是最近才创造出来的,它基本就是深层神经网络的代名词。受到人类大脑结构的启发,神经网络的计算模型于1943年首次提出。之后感知机的发明使得神经网络成为真正可以从数据中“学习”的模型。但由于感知机的网络结构过于简单,导致无法解决线性不可分问题。再加上神经网络所需要的计算量太大,当时的计算机无法满足计算需求,使得神经网络的研究进入了第一个寒冬。

深度学习以及关于TensorFlow的简介

图4 “deep learning”最近十年在谷歌搜索的热度趋势。

您可能还会对下面的文章感兴趣: